Strong uniqueness of the restricted Chebyshev center with respect to an RS-set in a Banach space

نویسنده

  • Chong Li
چکیده

Let G be a strict RS-set (resp. an RS-set) in X and let F be a bounded (resp. totally bounded) subset of X satisfying rG(F )> rX(F ), where rG(F ) is the restricted Chebyshev radius of F with respect to G. It is shown that the restricted Chebyshev center of F with respect to G is strongly unique in the case when X is a real Banach space, and that, under some additional convexity assumptions, the restricted Chebyshev center of F with respect to G is strongly unique of order 2 in the case when X is a complex Banach space. © 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Best Approximations from RS-sets in Complex Banach Spaces

The concept of an RS-set in a complex Banach space is introduced and the problem of best approximation from an RS-set in a complex space is investigated. Results consisting of characterizations, uniqueness and strong uniqueness are established.

متن کامل

A NORM INEQUALITY FOR CHEBYSHEV CENTRES

In this paper, we study the Chebyshev centres of bounded subsets of normed spaces and obtain a norm inequality for relative centres. In particular, we prove that if T is a remotal subset of an inner product space H, and F is a star-shaped set at a relative Chebyshev centre c of T with respect to F, then llx - qT (x)1I2 2 Ilx-cll2 + Ilc-qT (c) 112 x E F, where qT : F + T is any choice functi...

متن کامل

The Chebyshev selections and fixed points of set-valued mappings in Banach spaces with some uniform convexity

Keywords: Set-valued mapping Chebyshev center Uniformly convex Locally uniformly convex Chebyshev fixed point a b s t r a c t The existence of a continuous Chebyshev selection for a Hausdorff continuous set-valued mapping is studied in a Banach space with some uniform convexity. As applications, some existence results of Chebyshev fixed point for condensing set-valued mappings are given, and th...

متن کامل

For a dense set of equivalent norms , a non - reflexive Banach space contains a triangle with no Chebyshev center

Let X be a non-reflexive real Banach space. Then for each norm | · | from a dense set of equivalent norms on X (in the metric of uniform convergence on the unit ball of X), there exists a three-point set that has no Chebyshev center in (X, | · |). This result strengthens theorems by Davis and Johnson, van Dulst and Singer, and Konyagin.

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2005